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Abstract

Various types of genomic data (e.g., SNPs and mRNA transcripts) have been employed to identify risk genes for complex
diseases. However, the analysis of these data has largely been performed in isolation. Combining these multiple data for
integrative analysis can take advantage of complementary information and thus can have higher power to identify genes
(and/or their functions) that would otherwise be impossible with individual data analysis. Due to the different nature,
structure, and format of diverse sets of genomic data, multiple genomic data integration is challenging. Here we address the
problem by developing a sparse representation based clustering (SRC) method for integrative data analysis. As an example,
we applied the SRC method to the integrative analysis of 376821 SNPs in 200 subjects (100 cases and 100 controls) and
expression data for 22283 genes in 80 subjects (40 cases and 40 controls) to identify significant genes for osteoporosis (OP).
Comparing our results with previous studies, we identified some genes known related to OP risk (e.g., ‘THSD4’, ‘CRHR1’,
‘HSD11B1’, ‘THSD7A’, ‘BMPR1B’ ‘ADCY10’, ‘PRL’, ‘CA8’,’ESRRA’, ‘CALM1’, ‘CALM1’, ‘SPARC’, and ‘LRP1’). Moreover, we uncovered
novel osteoporosis susceptible genes (‘DICER1’, ‘PTMA’, etc.) that were not found previously but play functionally important
roles in osteoporosis etiology from existing studies. In addition, the SRC method identified genes can lead to higher
accuracy for the diagnosis/classification of osteoporosis subjects when compared with the traditional T-test and Fisher-exact
test, which further validates the proposed SRC approach for integrative analysis.
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Introduction

In genomic data analysis, one of the crucial issues is to identify

disease susceptible genes from the vast amount of data [1]–[8].

Some genes are related to the diagnosis task, but many are

presumably irrelevant [1]. During the past few years, various

clustering techniques have been developed to identify subsets of

genes significant for diagnosis or classification of diseases [1]–[7].

Among those gene selection methods, a variety of statistical

methods were used. For example, Yang et al. [1] used forward

sequential feature selection (FSFS) method to remove irrelevant

SNP data. Soneson et al. [2] used Canonical Correlation Analysis

(CCA) for joint analysis of gene expression and copy number

variations (CNVs). Berger et al. [4] developed a generalized

singular value decomposition (GSVD) to locate genes with both

high variations and high correlations across samples of gene

expression changes and CNVs. These methods demonstrated

limited success; there has been continuous demand for the

development of efficient data integration technique. In this work,

we developed a sparse representation based clustering (SRC)

method for gene selection, based on multiple features extracted

from genomic data. The features we used here were the statistical

measurements of the original genomic data, such as the mean and

standard deviation etc.. We refer the raw genomic data (SNPs or

gene expressions) as variables. The variable selection was

performed using the features of the original data instead of using

the raw data directly. In this work, we employed 5 features in the

analysis of the two data sets (see Section 2.3 ‘Features selection’ for

the detailed description). Sparse representation or compressive

sensing (CS) is a novel statistical method recently developed in

statistics and applied mathematics, which has found many

successful applications in diverse disciplines. For example, Wright

et al. proposed a CS based method for face recognition, which

showed better accuracy and resistance to noise [8]. We have

developed and applied the SRC method for chromosome image

classification and showed improved accuracy [9]. In this work, we

apply the SRC algorithm to select genes/variables that are

significant for OP using joint analysis of two different types of

genomic data: gene expression and SNP data. The description of

‘SRC clustering’ algorithm is given in Supporting Material S1.

To validate our method, we apply it to the study of osteoporosis,

which is a major public health problem over the world [10].

Osteoporosis is characterized by the low bone mineral density

(BMD) [11], which leads to increased risk to fragility fracture.

Genetic factors play an important role in the pathogenesis of

osteoporosis, as evidenced by high heritability ($50%) of BMD

[12]–[14]; however, specific genetic factors both influencing BMD

and contributing to the development of osteoporosis are largely

uncharacterized.
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Identifying genetic factors for osteoporosis is challenging

because of the nature of complex genetic determinations,

including polygenic determinations, multiple gene-gene interac-

tions, and multiple gene-environment interactions. So far, great

attempts have been made to identify osteoporosis risk genes;

however, most of them focused on DNA, RNA, or protein levels

individually, which were rarely combined or integrated in a

statistically rigorous manner to ascertain the importance of certain

gene(s) for bone phenotypes [15], [16]. For example, current

genome-wide association studies established relationship of gene(s)

and phenotypes (e.g., BMD) at DNA level [17], [18] without

considering RNA or protein expression, thus lacking an immediate

insight on the functions of genes or gene expression regulations.

Integrating substantial evidences from different levels (i.e., DNA,

RNA and protein) can not only improve chances of identifying

genetic factors for osteoporosis, but also ascertain the potential

functioning mechanisms of genes and their contributions to

osteoporosis.

The paper is organized as follows. We first briefly describe the

SRC method and the resulting gene shaving algorithm we

proposed. Then we apply the method to gene selection with

integrative analysis of both gene expression and SNP data from

osteoporosis patients. For the purpose of comparison with

individual data analysis, we also performed the study on each

data type (e.g., SNPs and gene expression data) respectively. To

demonstrate the advantage of our proposed integrative approach,

we compared the selected genes using the SRC method with the

previously reported osteoporosis susceptive genes [5], [19]. To

further validate the selected genes, we applied the method to the

classification of osteoporosis patients with the selected gene

expression and/or SNP data. Results showed that the SRC

method is able to better locate genes significant for the diagnosis of

osteoporosis patients than those from a single data set. In addition,

our proposed SRC method gives better diagnosis results when

compared with the T-test and Fisher-exact test. In particular, we

identified two new osteoporosis risk genes (e.g., ‘DICER1’, ‘PTMA’)

through joint data analysis. These genes cannot be identified with

single data set but show significant roles in osteoporosis etiology

from studies published in existing literatures, which suggests that

an integrated data analysis can lead to better identification of

genes, resulting in improved diagnosis.

Methods

In this section, we first describe the genomic data used in our

study (Section 2.1). Then we present the SRC model (Sec. 2.2), the

feature selection method (Sec. 2.3) and the SRC based gene/

variable shaving algorithm (Sec. 2.4). Finally, we describe the

method used for validating the selected genes (Sec. 2.5).

2.1 Data
We applied the SRC method to the integrative analysis of two

data sets (i.e., gene expression data set and a SNP data set) from

our osteoporosis study. We describe the data sets as follows.

The gene expression data were from female osteoporosis

subjects with extremely low (N = 40) (cases) vs. high (N = 40)

(controls) bone mineral densities (BMDs). In the present study we

selected circulating monocytes as our target cells because

circulating monocytes serve as progenitors of osteoclasts [21]–

[23], and secrete osteoclastogenic cytokines, such as IL-1, IL-6,

and TNF-a [24]–[26]. Circulating monocytes were isolated from

50 ml whole blood. After RNA extraction, expression levels of

22283 transcripts were quantified by Affymetrix Human Genome

U133A 2.0 Array (Affymetrix, Santa Clara, CA). GCOS 1.2 (Gene

Chip Operating Software) was used to process the probe-level raw

data. We used the RMA (Robust Multi-array Average) algorithm

[6] implemented in R package to transform the probe-level raw

data into gene expression data.

The SNP data set was from osteoporosis vs. healthy subjects,

which were recruited with the purpose of identifying genetic

factors underlying osteoporosis via genome-wide association study

in a total of 1000 random subjects (age: 50.3+18.3 years) [17].

These subjects were genotyped with Human Mapping 500K

Array Set that examined about 500000 SNPs with a relatively even

distribution across the entire human genome. Since the gene

expression data currently used are from female samples, we first

distributed the total 501 female samples according to the hip Z-

score of BMD and then selected the bottom 100 and top 100

subjects of the BMD phenotypic distribution as cases and controls,

respectively. A total of 376821 eligible SNPs were used in final

analysis. In addition, we randomly selected 70 cases and 70

controls as training data for gene selection, and the rest 30 cases

and 30 controls were used as an independent testing data set.

To perform joint data analysis, we generate a combined data set

from the two single data sets, which are described as follows. For

the i-th gene, there are nt1 gene expressions and nt2 SNPs (in the

gene expression data set, one gene may have one or more gene

expressions; in the SNP data set, one gene usually has more than

one SNPs). Thus for the i-th gene, we make a cross combination of

the nt1 expressions and nt2 SNPs to obtain the nt1|nt2 vector

consisting of these two data (shown in Figure 1), which will be used

for the selection of genes. Specifically, with the combination of

gene expression (22283 expressions) and SNP data (376821 SNPs),

we have a new data vector with 360930 variables (some of the

genes do not appear in both data sets, which were not taken into

consideration for the combined analysis). For each gene, the

feature vector contains two sub-vectors: gene expression and SNP

data, which will be used together as the input to our SRC method

for joint data analysis.

2.2 SRC clustering algorithm
Figure 2 shows the diagram of the proposed SRC model. The

‘Feature extraction’ can be the output of a feature extraction

method discussed above (e.g., FSFS, CCA, GSVD), or statistical

features such as the mean and variance. Y~ yif g[Rm|p consists

of feature vectors extracted from the data, where

yi[Rm|1i~1,2, . . . ,p is the feature vector extracted for the ith

gene/variable; m is the number of features (in this work, we

employed m = 5 features for each gene in one type of data, as

shown in Section 2.3 ‘Features selection’); and p is the number of

Figure 1. An illustration of the combination of two different
types of data for the ith gene.
doi:10.1371/journal.pone.0042755.g001
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gene/variables (for the gene expression data used in this work,

p = 22283; for the SNP data, p = 376821). A~½A1, . . . ,Ac�[Rm|n

is the characteristic matrix that we will design to separate the data

into c groups. For each group, Ai[Rm|ni contains ni samples, and

n~
P

ni. The ‘SRC clustering’ is to cluster each yi according to

the characteristic matrix A that can be learned from the training

data (the column number n is dependent on the number of features

m. Detailed description can be seen in Supporting Material
S2).

The description of the SRC algorithm is given in Supporting
Material S1. The input of the SRC algorithm is the character-

istic matrix A, which is designed to cluster the data into different

groups. In the previous studies, the characteristic matrix A was

formed using the training samples [8]–[9]. In the current work, we

design the characteristic matrix A with column vectors v to

designate different clusters with specific characteristics extracted

from data. The clustering of features is based on both vector angle

and amplitude (e.g., measured using the L2 norm of the vector).

The vector angle between the two column vectors v1 and v2 is

defined by h v1,v2ð Þ, with cos hð Þ~(v1|v2)=(Ev1EEv2E). The

design of characteristic matrix A, is described in Supporting
Material S2 and the description of extracted feature vectors yi

will be given in Section 2.3.

2.3 Features selection
As shown in Figure 2, we used the extracted features Y from the

original data as the input for the variable/gene selection. In this

work, we proposed to employ five features. Specifically, for each

gene/variable (gene expressions or SNPs), we have a feature vector

defined by Eq. (1):

std0,std1,D �XX 0{ �XX 1D,DcorrD,1{ ak k2

� �T ð1Þ

where �XX0 and �XX1, std0 and std1 are the means and standard

deviation of control and case group respectively; corr is the Pearson

correlation coefficient between each gene expression (or SNP) data

and the healthy status (‘1’ for patients, and ‘0’ for controls); and a is

the normalized amplitude of vector std0,std1,D �XX 0{ �XX 1D,DcorrD½ � T
Features std0 and std1 reflect the difference within each group,

mean difference D �XX 0{ �XX 1D and the Pearson correlation coefficient

DcorrD reflect the difference between the control and case groups.

Therefore, feature vectors with smaller first two entries while

larger last three entries are considered to be significant for

discriminating control and case groups.

For a data set, we can extract feature vectors for each variable/

gene to construct a feature matrix Y~ Y1,Y2, � � �Yp

� �
[Rr|p

where p is the number of variables/genes, and r is the number of

features. In this work, r = 5 for the analysis of one type of data and

r = 10 for the integrative analysis of two types of data. For the

integrative analysis, since each gene has two types of data, features

were extracted from both sub-vectors as illustrated in Figure 1.

Since different feature has different range, a scale transformation is

performed for each row of the feature matrix Y so that all the

entries of Y are within the range of [0, 1]. In Supporting
Material S3, we discuss the significance of these selected features

and the relationships between them (see Fig. 1 and Fig. 2 in

Supporting Material S3).

2.4 The SRC based gene/variable shaving
Once we have the characteristic matrix A and the feature

vectors Y, the SRC algorithm given by Supporting Material S1
can be applied for gene shaving or for the selection of significant

genes. Figure 3 gives an illustration of the gene/variable shaving

process using the SRC based method. As shown in Figure 3, all

genes were first grouped into different clusters using the SRC

algorithm (Figure 3 (a)). Since each group is designed to have

different statistical significances, those genes that fall into the

group(s) of a particular significance can be selected for further

analysis (Figure 3 (b)), while others will be shaved off. The process

will continue until the number of remaining genes meets the

threshold set with prior knowledge.

When the data set is very large, which is always the case for

genomic data, a sliding window is applied and the gene selection is

performed within the window (Figure 4 (a)) in order to account for

local variations in the data. We also performed data shuffle with

Fisher-Yates Shuffling algorithm [20] to reduce bias. Those genes

selected with highest frequencies will be the ones that are most

significant, as shown in Figure 4 (b). A description of the SRC

based gene shaving algorithm with a sliding window is given as

Algorithm 2.

Figure 2. Diagram of SRC model for the data analysis using
multi-features.
doi:10.1371/journal.pone.0042755.g002

Figure 3. Diagram of gene shaving by SRC. (a) all genes were clustered into different groups; and (b) only clusters of a particular significance
were selected for further analysis.
doi:10.1371/journal.pone.0042755.g003
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Algorithm 2: SRC based gene shaving algorithm.

1. Set the window length, the window sliding step length, and the

starting point;

2. For the l-th iteration, perform gene selection within a window

and record the selected genes;

3. Slide the window from the starting point with the pre-set step

length, and repeat Step 2 until the window reaches the ending

point of the data sample.

4. Shuffle the data with Fisher-Yates Shuffling algorithm; and

repeat Step 2–Step 3.

5. Compare the gene list generated by all l iterations with that

generated by previous l-1 iterations; if the gene list percentage

similarity (PS) is higher than a pre-set threshold, exit; otherwise,

go to Step 4.

In Step 5, the gene list percentage similarity (PS) between the

two different lists is defined by Eq. (2).

PS~
(#variables from list1)\(#variables from list2)

#variables from list1
ð2Þ

2.5 Validation
Two strategies were taken to validate our method: 1.We test if

the osteoporosis susceptive genes selected by our method can be

confirmed with previously reported ones, in addition to the

identification of new genes. 2. We test if gene expression/SNPs

corresponding to selected genes are able to identify osteoporosis

patients from healthy controls, which are quantified with

classification ratio (CR). We define CR in this work as the ratio

between the number of correctly classified samples and total

number of samples. We conducted the leave-one-out (LOO) cross

validation. We compared our method with current ones for gene

selection (e.g., T-test for expression data and Fisher-exact test for

SNP data). In addition, we compared the results of using

combined data sets (gene expression and SNPs) with those of

using each individual data set, in order to demonstrate the

advantage of the proposed integration approach.

Results

One goal of our work was to study whether integrative analysis

approach with our proposed SRC algorithm can lead to better

identification of susceptible genes for the diagnosis of complex

diseases such as osteoporosis. We conducted the analysis on two

data sets with different structures, ranges and formats: gene

expression (40 patients/40 controls, 22283 gene expressions), and

SNP association analysis data (70 patients/70 controls, 376821

SNPs) from osteoporosis study. To validate the selected genes, we

compared our selected gene lists with those previously reported. In

addition, we tested if the selected genes can result in better

diagnosis of osteoporosis. We performed the leave-one-out (LOO)

cross validation for both data sets and the test using an

independent SNP data set (30 patients/30 controls, 376821

SNPs). To demonstrate the performance of our SRC method,

the results of our SRC method for gene selection were compared

with those from both T-test and Fisher-exact test. In addition, the

results of classifying osteoporosis using individual and joint data

sets were compared, showing that integrated analysis can give

higher diagnosis accuracy.

3.1 Comparison of selected genes using different
methods

To show the differences between integrative analysis and

individual analysis using both the SRC and conventional feature

selection methods (e.g., T-test and Fisher-exact test), we compared

the first 500 gene expressions and 1000 SNPs selected by different

methods using the Venn diagram, as shown in Figure 5. The

intersection between individual analysis using the SRC method

and T-test for the gene expression data is about 45% (Figure 5 (a),

the intersection between B and C); the intersection between the

SRC method and Fisher-exact test for individual analysis of SNPs

is about 39% (Figure 5 (b), the intersection between B and C area);

and the intersection between combined analysis using SRC

method and individual analysis is below 10% (A and B, A and

C area for both Figure 5 (a) and (b)).

When compared the results with the previous study, our SRC

based variable selection method was able to locate osteoporosis

susceptive genes that were reported before [19] such as ‘ESRRA’,

‘CALM1’, ‘CALM1’, ‘SPARC’,‘LRP1’, ‘THSD4’, ‘CRHR1’,

‘HSD11B1’, ‘THSD7A’, ‘BMPR1B’, ‘ADCY10’, ‘PRL’, ‘CA8’, et. al.

Supporting Material S6 gives the first 50 gene expressions and

Figure 4. The SRC based gene shaving with a sliding window. (a) Gene selection was performed within each sliding window; (b) Genes
selected with Fisher-Yates Shuffling algorithm; the higher the selected frequencies, the more significance of the variable (see the explanation of
Algorithm 2).
doi:10.1371/journal.pone.0042755.g004
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SNPs selected using joint data sets. In particular, there were some

significant genes that were not identified by individual data

analysis, such as ‘DICER1’, ‘PTMA’ etc. However, evidences have

existed to show that these genes may be associated with the

osteoporosis disease (details in the Section of Discussion).

3.2 Validation of the selected genes on the diagnosis of
osteoporosis

We further validated the selected genes for the diagnosis of

osteoporosis subjects, whose accuracy was measured with the

LOO cross-validation.

First, we showed that using gene expression or SNPs selected

with our proposed SRC method can give higher diagnosis

accuracy than that of the current methods such as the t-test and

Fisher exact test. When using selected gene expression data alone

to identify the osteoporosis patients, we got the highest classifica-

tion ratio (CR) (86.25%) with 73 expression data, while for t-test

method we got the highest CR of 90% with 225 gene expressions,

as shown in Figure 6 (a). For the SNP data set, we got the highest

CR (100%) with 883 SNPs using the SRC, while the highest CR

(96.5%) with 1460 SNPs using Fisher-exact test, as shown in

Figure 6 (b). Both results indicate that the classification of

osteoporosis with the SRC is significantly better than the t-test

and Fisher-exact test, which are currently widely used for the study

of osteoporosis diseases.

Besides the LOO cross-validation, we also performed a blind

test on the selection of OP susceptive genes. We applied the

method to the classification of osteoporosis on an independent

SNP data set (30 patients/30 controls, 376821 SNPs), and

compared the results with the Fisher-exact test analysis, as shown

in Figure 7. Using the SRC selected SNPs, the classification ratio

reached as high as 98.33%, while using the SNPs selected with

Fisher-exact test, the highest CR was only 88.33%, as shown in

Figure 7.

Finally, we compared the classification accuracy of using

combined data set with that of using individual data. For the

combined data set, each selected feature vector contains two sub-

vectors (SNP and gene expression sub-vector). Therefore, we

calculated the CRs of using the whole feature vector and each sub-

vector respectively. Figure 8 demonstrates that higher identifica-

tion accuracy can be obtained with complementary information

from both data sets than using an individual data.

Discussion

Identification of candidate genes from vast amount of genomic

data for the diagnosis of complex disease has been a significant

challenge. In this study, we address the problem by developing a

sparse representation based clustering (SRC) method that can be

used for integrative analyses of various types of genomic data. We

applied the SRC based gene/variable selection method to the

identification of genes associated with osteoporosis diseases. The

SRC method demonstrates two advantages: 1. Different from

Figure 5. Comparison of the selected variables (expressions/
SNPs) using the Venn diagram. (a) comparison of the first 500 gene
expressions selected with integrative analysis by the SRC method
(orange area A), individual data analysis using SRC method (yellow area
B) and using T-test (blue area C) respectively; (b) comparison of the first
1000 SNPs selected with integrative analysis with the SRC method
(orange area A), individual analysis with the SRC method (yellow area B)
and Fisher- exact test (blue area C) respectively. Supporting Materials
S4 and S5 give the first 50 variables (gene expressions/SNPs) selected
using individual analysis. Supporting Material S6 gives the first 50
variables (gene expressions and SNPs) selected using integrative
analysis, and Fig. 1 in Supporting Material S6 compares the selected
variables in cases and controls.
doi:10.1371/journal.pone.0042755.g005

Figure 6. Comparison of classification accuracy with LOO cross-validation using the selected variables. (a)Validation results for the
gene expression data by SRC the method and t-test method respectively. (b)Validation results for the SNP data by the SRC method and Fisher-exact
test method respectively.
doi:10.1371/journal.pone.0042755.g006
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other analysis methods, the SRC method employs multi-features

extracted from diverse data sets rather than the original raw data,

facilitating the integration of data with different formats and

structures. 2. The SRC method outperforms several currently used

significance test methods such as the T-test and Fisher-exact test,

by employing a more sophisticated clustering based approach.

When compared with previously reported osteoporosis suscep-

tible genes, the SRC based gene shaving method not only

identified genes that were previously reported [19], such as

‘THSD4’, ‘CRHR1’, ‘HSD11B1’, ‘THSD7A’, ‘BMPR1B’ ‘ADCY10’,

‘PRL’, ‘CA8’, ‘ESRRA’, ‘CALM1’, ‘CALM1’, ‘SPARC’, ‘LRP1’, but

also new susceptive genes (‘DICER1’, ‘PTMA’ et. al.). Evidences

[27–35] have shown that these genes play a significant role in the

etiology of osteoporosis, as discussed below. In particular, it should

be noticed that these genes cannot be identified with the analysis of

an individual data set, demonstrating the advantage of integrative

analysis of multiple types of data. In the following, we further

elucidate the relevance of the identified new genes to osteoporosis

from previous studies.

DICER1 (dicer 1, ribonuclease type III), also known as Dicer, is

essential for microRNA (miRNA) processing and the synthesis of

small interfering RNAs from long double-stranded RNA [27].

This gene is located at 14q32.13. Some evidences suggested that

DICER1 was closely associated with bone metabolism. For

example, Dicer in osteoclasts controls activity of bone resorption

in vivo [28]. Gene silencing of Dicer by small interfering RNA

revealed global inhibition of osteoclast transcription factor

expression and function, decreased osteoclastogenesis, and de-

creased bone resorption in vitro [29]. Dicer possessed significantly

decreased miR-21 levels and increased PDCD4 protein levels so

that RANKL-induced osteoclastogenesis was impaired in those

cells [30]. Dicer generated miRs are necessary for two periods of

bone formation, to promote osteoblast differentiation before birth,

and control bone accrual in the adult [31].

PTMA (prothymosin, alpha) may play important roles in

osteoporosis. Over-expressed PTMA enhanced p53 transcriptional

activity in reporter gene assays for p53 target gene promoters

hdm2, p21, and cyclin G, and increased mRNA and protein levels

for endogenous p53 target genes, hdm2 and p21 [32]. Some

studies reported that p53 regulates osteoblast differentiation, bone

formation, and osteoblast-dependent osteoclast differentiation

[33]. As p53+/m mice age, they reveal an early onset of

phenotypes associated with aging. A recent serendipitously also

generated p53 mutant allele resulted in a hypermorphic version of

p53 that mediates decreased longevity. The reduced longevity is

accompanied by the accelerated onset of a variety of aging

phenotypes. These include reduced longevity, osteoporosis,

generalized organ atrophy and a diminished stress tolerance

[34], [35].

When we compared the selected gene list with that selected by a

t-test and Fisher-exact test (see Figure 5(a) and (b)), it can be seen

that the variables (SNPs/expressions) selected by the SRC method

are quite different (.50% in the number). However, the

integrative analysis with the SRC method selects two sub-vectors

simultaneously and gives better classification accuracy, because of

the use of complementary information. For example, using the

SNP data, the SRC based method can give the highest CR of

100% than 97.14% of using Fisher exact test with less number of

SNPs (see Figure 6). When using both types of data for the cross

validation, the CR of using combined data sets with the SRC

Figure 7. The classification of osteoporosis patients on an
independent SNP data set.
doi:10.1371/journal.pone.0042755.g007

Figure 8. Using selected variables from both data sets for the classification of osteoporosis patients. (a) Classification accuracy using
gene expressions along with N = 0, 83, 332 selected SNPs employed for the classification. (b) Classification accuracy using SNPs along with N = 0, 75,
332 selected gene expressions employed for the classification.
doi:10.1371/journal.pone.0042755.g008
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method is much higher than that of using one type of data (see

Figure 8), demonstrating the significance of integrative data

analysis. In addition, when performing a blind test on an

independent SNP data set (30 cases 30 controls), the CR can be

as high as 98.33% with the SRC method; with Fisher-exact test

selected SNPs, the highest classification ratio is only 88.33%,

showing the advantage of the SRC method.

In our integrative analysis method, gene expression and SNP

data were combined in terms of each gene. Therefore, our method

uses joint information from two complementary data rather than

from a single type of data, which can lead to the increase of

reliability in gene identification. Besides the significance discussed

above, the integrative analysis employed in this work can be

generalized to include more than two types of data. We are

currently testing the method for the integration of multiple

genomic data from the TCGA database for improved diagnosis of

cancers such as the leukemia. In addition, the sample size in this

work is small (100/100 cases/controls for the SNP data set and

40/40 subjects for the gene expression data set). To further

validate the proposed method and the significance of the selected

genes, larger data sets will be tested.
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